Existence and concentration of ground state solution to a critical p-Laplacian equation
نویسندگان
چکیده
منابع مشابه
EXISTENCE AND CONCENTRATION OF GROUND STATE SOLUTION TO A CRITICAL p–LAPLACIAN EQUATION
In this paper, we consider the existence and concentration behavior of positive ground state solution to the following problem { −hΔpu+V (x)|u|p−2u = K(x)|u|q−2u+ |u|p−2u, x ∈ RN , u ∈W 1,p(RN ), u > 0, x ∈ RN , where h is a small positive parameter, 1 < p < N , max{p, p∗ − p p−1} < q < p∗ , p∗ = Np N−p is the critical Sobolev exponent, V (x) and K(x) are positive smooth functions. Under some n...
متن کاملExistence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملExistence of a ground state solution for a class of $p$-laplace equations
According to a class of constrained minimization problems, the Schwartz symmetrization process and the compactness lemma of Strauss, we prove that there is a nontrivial ground state solution for a class of $p$-Laplace equations without the Ambrosetti-Rabinowitz condition.
متن کاملexistence of a positive solution for a p-laplacian equation with singular nonlinearities
in this paper, we study a class of boundary value problem involving the p-laplacian oprator and singular nonlinearities. we analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ we find lower bounds of critical parameter $lambda^{ast}$. we use the method ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Equations & Applications
سال: 2013
ISSN: 1847-120X
DOI: 10.7153/dea-05-34